

Technische Universität Berlin STEFAN RETTIG

BSR WATER

Platform on **Integrated Water** Cooperation

Duration:

1 October 2018 to 31 March 2021

Associated partners

Funding: Interreg BSR Programme 2014-2020

million

Countries from Baltic Sea Region

www.bsrwater.eu

Projektziel BSR WATER

Verbesserung der sektorübergreifenden Zusammenarbeit im Bereich der Wasserwirtschaft durch die Möglichkeit eines transnationalen Erfahrungsaustauschs, des Austauschs bewährter Verfahren und Lösungen sowie die Entwicklung eines umfassenden Überblicks über die aktuellen und zukünftigen politischen Kontexte.

Partner

- 1. Union of the Baltic Cities (UBC), Sustainable Cities Commission, FI
- 2. Baltic Marine Environment Protection Commission Helsinki Commission (HELCOM), FI
- 3. Technical University Berlin, DE
- 4. University of Tartu, EE
- Gdansk University of Technology, PL
- 6. Environmental School of Finland (SYKLI), FI
- 7. Riga City Council, LV
- 8. City of Helsinki, FI
- 9. State Geological Unitary Company "Mineral" (SC Mineral), RU
- 10. State Autonomous Institution of the Kaliningrad region "Environmental Center "ECAT-Kaliningrad", RU

Entwicklung neuer Ideen durch Erfahrungsaustausch

Zusammenstellung bewährter Verfahren, Lösungen und Fachkenntnisse im Wassermanagement

Ziel:

Projektergebnisse in Form von entwickelten Tools, bewährten Verfahren und technische Lösungen zu sammeln und auf einer umfassenden Online-Plattform zu veröffentlichen

Aktivitäten:

- Sammeln von bewährten Verfahren, Lösungen und Tools
- Schaffung eines funktionalen Expertennetzwerks für die Zusammenarbeit in wasserbezogenen Fragen
- Verbesserung der Akzeptanz neuer Technologien und Ansätze

Einbindung potentieller Benutzer in die Plattformkooperation

Ziel:

to promote uptake and facilitate improved outreach of good practices, solutions and expertise in an online platform Baltic Smart Water Hub

Aktivitäten:

- Erfassung und Aufbau von Kontaktierungs-Methoden für ein erfolgreiches Engagement von Fachleuten im Wassersektor
- Modelle zum Austausch testen und einbetten, um neue Plattformbenutzer zu gewinnen

Förderung des regionalpolitischen Dialogs zum nachhaltigen Wassermanagement

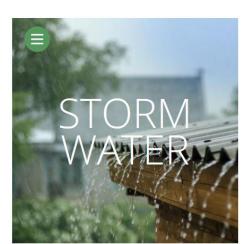
Ziel:

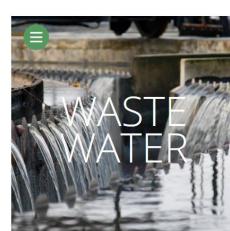
Ausarbeitung von politischen Instrumenten auf der Grundlage der Ergebnisse regionaler Projekte und HELCOM-Arbeitsgruppen und beitragen zum regionalen Dialogs zur Förderung nachhaltiger Lösungen im Abwasser- und Regenwassermanagement, um die Nutzung von Nährstoffen und anderen wertvollen Komponenten zu verbessern

Aktivitäten:

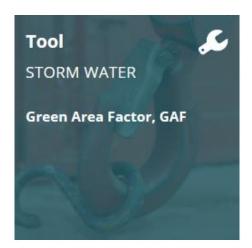
- Ausarbeitung regionalpolitischer Empfehlungen zum Recycling von Nährstoffen
- Entwicklung von Empfehlungen für gefährliche Stoffe
- Entwicklung eines integrierten Modells für das Zusammenspiel zwischen Wasser,
 Schlamm und Energie
- Erarbeitung politischer Empfehlungen zur Umsetzung eines nachhaltigen städtischen Regenwassermanagements

Ein Online-Portal zur Unterstützung des lebenslangen Lernen von Wasserexperten auf internationaler Ebene




Vier Themengebiete: Süßwasser, Meere, Regenund Abwasser mit einzigartigen Inhalten

Präsentation der neuesten bewährten Verfahren, technischer Lösungen und Werkzeuge des Wassersektors



Example of functioning on site:

Pilot studies of innovative high energy-efficient and cost-effective wastewater treatment concept at the Wschód WWTP in Gdańsk, Poland.

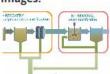
The possibility of recovering a high fraction of organic carbon and removing nitrogen with nitritation-anammox process is seen as the key to achieve the ultimate in the energy balance positive wastewater treatment plant. Increased carbon extraction improves energy balance of a plant due to higher production of biogas that can be utilised in a combined heat and power plant (CHP) to generate surplus renewable power. The anammox-based process allows for a shortcut in the nitrogen cycle since anammox bacteria convert ammonium and nitrite directly into nitrogen gas. This enables nitrogen removal at 60% lower oxygen consumption compared to conventional nitrification-denitrification systems. Besides, the process does not require a carbon source for denitrification that allows higher carbon extraction.

The innovative combined technology improves considerably energy balance and allows to make a plant cost-effective and energy-positive.

Cost:

€170 000

Construction of the pilot plant


Funding:

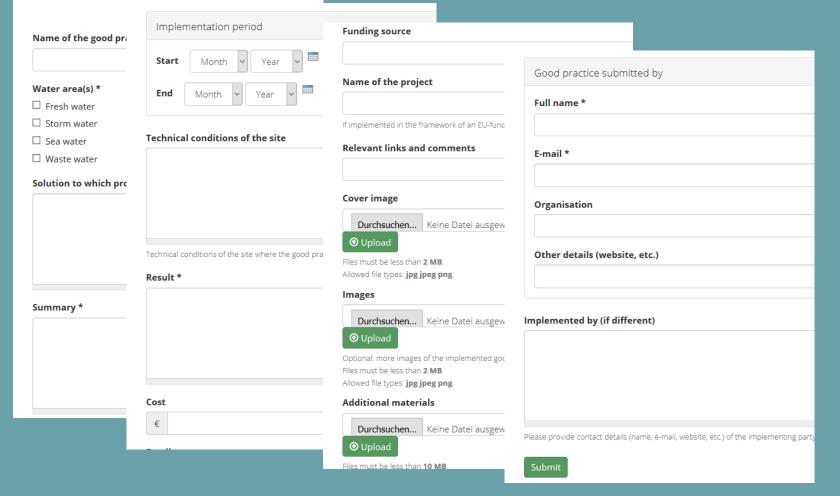
INTERREG Baltic Sea Region Programme

Related materials:

Concept and outcomes flyer
Report on pilot testing of the anammox-based system

Images:

Informationen über bestehende Finanzierungsinstrumente, den regionalen politischen Rahmen und potenzielle Netzwerkpartner



Raum für Wissens- und Erfahrungsaustausch für kontinuierliche sektorübergreifende und transnationale Zusammenarbeit in der Wasserwirtschaft

Sie sind herzlich eingeladen, Inhalte an das Hub zu übermitteln und Ihr Fachwissen mit der Region zu teilen!

Submit a Good Practice

