

INNOVATIONEN FÜR IHR KANALNETZ

GERUCH | FREMDWASSER | INGENIEURLEISTUNGEN

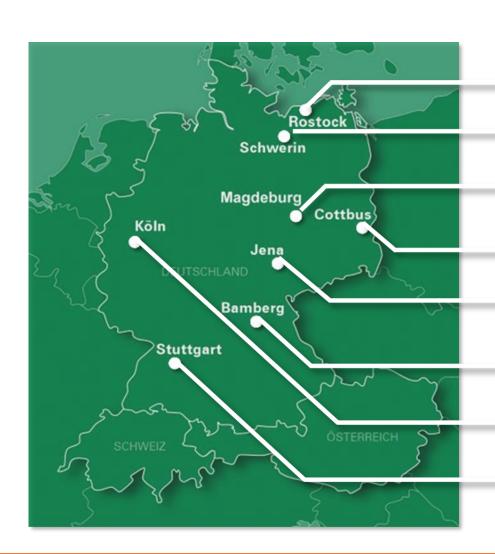
Geruchs- und Korrosionsmanagement Präventiv aktiv werden

Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

Agenda

1. Vorstellung UNITECHNICS


- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

UNI TECHNICS Vorstellung UNITECHNICS

- Familienunternehmen
- Ca. 55 Mitarbeiter
 - dar. 25 Ingenieure
 - dar. 2 Elektroplaner
- Hauptsitz in Schwerin
- 8 Standorte in Deutschland
- Umsatz 5 Mio. EUR
- 90 % Deutscher Markt
- Made in Germany
- Breites Netzwerk in Fachgremien

Uni

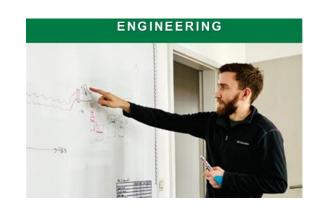
UNITECHNICS Standorte und Kompetenzen

- IB Rostock | 8 Mitarbeiter/innen | INDIKA, SULFIDBILANZ, Sanierungsplanung, KA Optimierung, Hydraulik
- Hauptsitz Schwerin | 25 Mitarbeiter/innen | Engineering HQ, PW Sanierung, Kanalnetzplanung, F+E, Anlagenbau, Produktfertigung, Vertrieb, Backoffice
- IB Magdeburg | 4 Mitarbeiter/innen | Planung Dosier- und Abluftanlagen, Betreuung Messkampagnen, Betreuung Serviceportal
- Vertriebsbüro Cottbus | 2 Mitarbeiter/innen | Vertriebsaußendienst, Backoffice
- Vertriebsbüro Jena | 2 Mitarbeiter/innen | Vertriebsaußendienst, Backoffice
- Vertriebsbüro Bamberg | 2 Mitarbeiter/innen | Vertriebsaußendienst, Backoffice
- Vertriebsbüro Köln | 3 Mitarbeiter/innen | Vertriebsaußendienst, Backoffice
- IB Stuttgart | 6 Mitarbeiter/innen | IT, (Rohr-)Hydraulik, Inspektion, 3D Modellierung, Geruchsvermeidungskonzepte, Kanalnetzberechnungen, Internationale Vertrieb, Vertriebsaußendienst, Backoffice

IECHNICS

Unsere Vision:

UNITECHNICS wird Ansprechpartner **Nummer 1** bei Geruch und anderen Herausforderungen im Abwasserbereich.


Unsere Mission:

Gemeinsam mit unseren Kunden entwickeln wir aus dem Wissen der Abwasserbranche Lösungen für **Bürgerzufriedenheit**, **Gebührenstabilität** und **Betriebssicherheit**.

UNITECHNICS Geschichte

seit 1990

seit 2000

Uni TECHNICS

UNITECHNICS Themenfelder

Verfahrenstechnische & sonstige Beratung

Innovationen für Ihr Kanalnetz

UNITECHNICS Weiterbildungen

Lösungen gegen Geruch & Korrosion

Wasser- und Havarieverschlüsse

UNITECHNICS Anlagenund Sonderbau

Produkte und Strategien gegen Ratten

Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

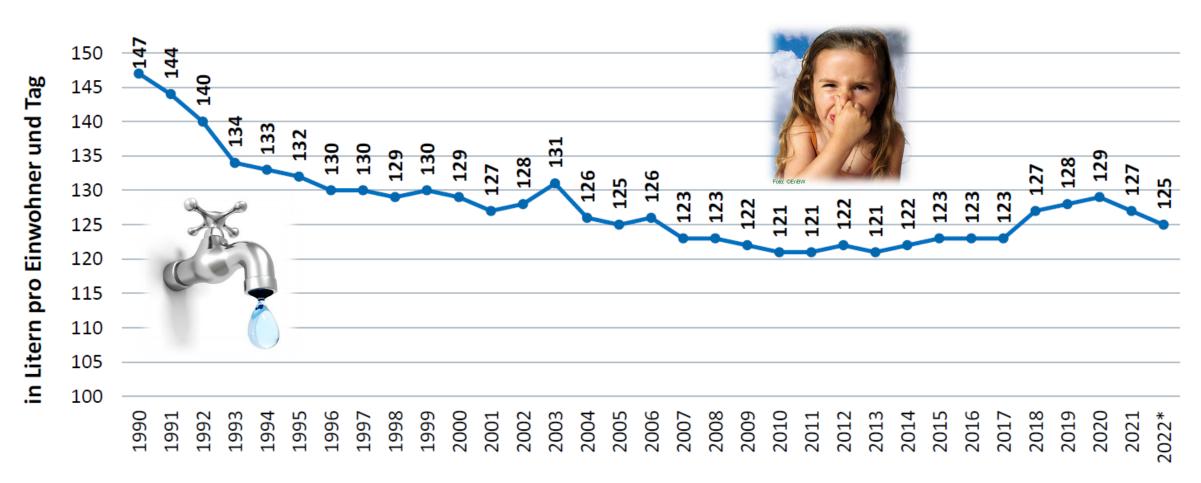
Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

Grundlagen Geruch und Korrosion

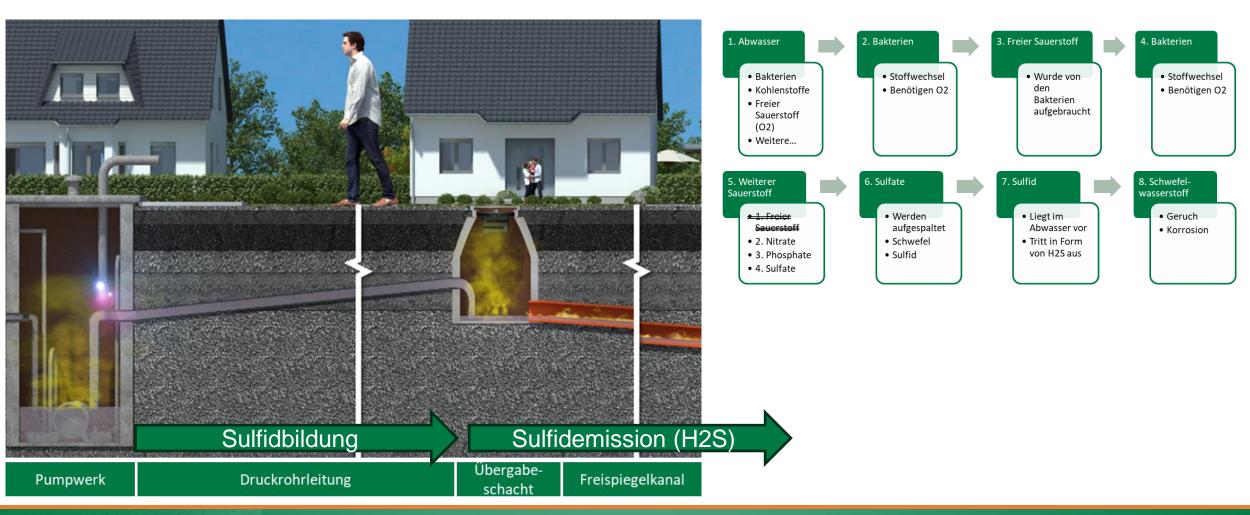
Wie und wo werden wir mit Geruch oder Korrosion konfrontiert? Symptome:

Geruchsbeschwerde durch Bürger


 Schwefelsäurekorrosion an Rohrleitungen, Schächten und Sonderbauwerken

Negativer Einfluss auf die Abwasserbehandlung/ -reinigung (Bläh-, Schwimmschlamm,...)

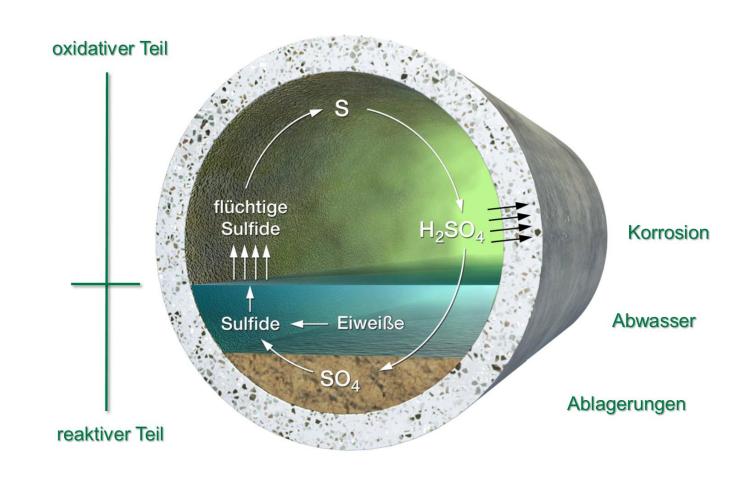
Entwicklung des personenbezogenen Wassergebrauchs in Deutschland


Quelle: BDEW-Wasserstatistik, bezogen auf Haushalte und Kleingewerbe (HuK); Grundlage: Einwohnerdaten auf Basis Zensus 2011

* vorläufig

Grundlagen Geruch und Korrosion

Warum stinkt es?



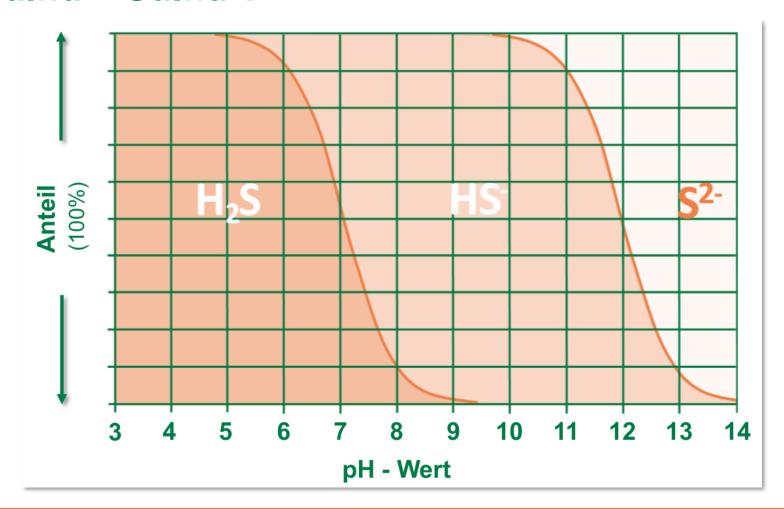
Sulfid als sekundäres Osmogen, Sulfidentwicklung

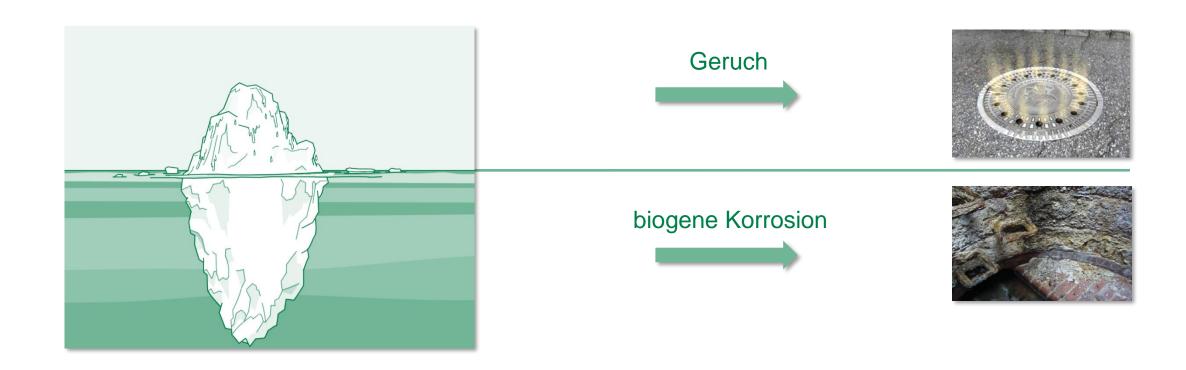
Haupteinflussfaktoren für die Sulfidbildung und H₂S-Emission sind:

- Sulfatgehalt
- Temperatur
- organische Verschmutzung
- Sauerstoffgehalt / Nitrat
- Sielhaut
- pH-Wert
- Fließgeschwindigkeit
- Fließzeit
- Betriebsweise / -systeme

UNI

Sulfidemissionen




Sulfid = Sulfid ?

Geruchsprobleme entstehen dort wo Geruchsstoffe emittieren!

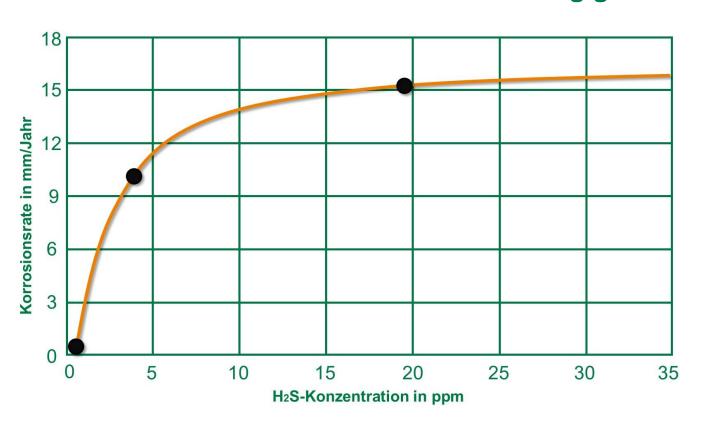
Uni TECHNICS

Geruch und biogene Korrosion

Uni TECHNICS

Warum stinkt es? Wichtige Geruchsstoffe sind (Auswahl):

	Geruch	Kürzel/ Beispiele
Schwefelwasserstoff	Faule Eier	H_2S
Ammoniak	Urin	NH ₃
VOC (Aldehyde/ Alkohole)	Lösungsmittel	Butylacetat
Dimethylsulfid	Faules Gemüse	C ₂ H ₆ S
Mercaptane	Kohl	CH ₂ SH
Skatol	Kot	C_9H_9N
Benzol	stechend süßlich	C_6H_6
Buttersäure	Erbrochenes	$C_4H_8O_2$
Essigsäure	Essig	$C_2H_4O_2$

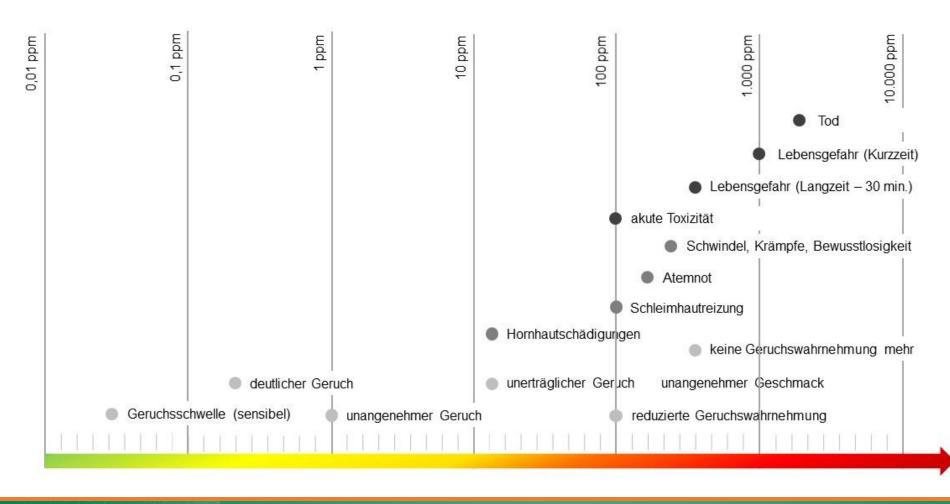


Uni

TECHNICS

Biogene Korrosion

Korrosionsrate in Abhängigkeit der H₂S Konzentration


Biogene Korrosion: starke biogene Korrosionserscheinungen $\emptyset \geq 0,5$ ppm durch Schwefelwasserstoff (Durchschnittswert)

Uni TECHNICS

Gefahrstoff Schwefelwasserstoff!

Obermayer et al., 2017 nach Frey 2008

Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

Lösungen

Chemikaliendosierstation Eisen

Chemikaliendosieranlage Nitrate

Chlordioxiddosierung

Druckluftspülung

Linienbelüftung

Druckleitung verlängern

Abluftbehandlung

Schachtfilter

korrosionssichere Bauweise

viele weitere, bis hin zu Kombinationen

Fällmitteldosierung

- ► Wirkprinzip Eisendosierung: Entstehendes Sulfid im Abwasser reagiert durch Zugabe von Eisen(II)-Lösung (FeCl₂ oder FeSO₄) zu FeS. Dieses ist sehr stabil und steht nicht mehr zur Ausgasung zur Verfügung.
- ► Eisen(III)-Lösungen würden zunächst in größerem Umfang mit Phosphor reagieren.
- ► Eisen wird auf der KA "zurückgewonnen" und steht in/nach den aeroben Stufen zur Phosphorfällung zur Verfügung

Vorteile	Nachteile
Gute Wirkung gegen Korrosion	Teile des Fällmittels reagieren mit Phosphor bereits im Kanal → Schlammbildung
Leicht steuerbar und gut dosierbar	Aufsalzung des Abwassers
günstig beziehbar – z.T. selbst mischbar	Gefahr der Rücklösung bei pH-Werten < 6,0

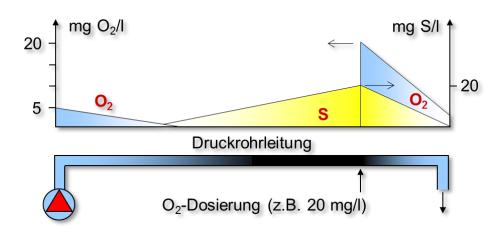
Abwasserfrischhaltung (Nitratdosierung)

Wirkprinzip Abwasserfrischhaltung:

Durch die Zugabe von Nitrat oder anderen Sauerstoffquellen (Wasserstoffperoxid etc.) werden anaerobe Zustände/Zonen verhindert/ reduziert. Dadurch wird die Bildung von Schwefelwasserstoff unterbunden bzw. reduziert

► Einige dieser Sauerstoffdonatoren haben zusätzlich eine hygienisierende Wirkung

Vorteile	Nachteile
Gute Wirkung gegen Korrosion	Adaption Biologie → steigender Dosiermittelbedarf
Leicht steuerbar und gut dosierbar	Verbrauch von CSB im Abwassernetz → Beeinträchtigung der Kläranlage
	Wenige Lieferanten → Abhängigkeit


Abwasserfrischhaltung (Thiox)

► Wirkprinzip Thiox:

Rückoxidation bereits gebildeten Schwefelwasserstoffs durch mikrobiologische Stoffumsetzungsprozesse

► Nötige Maßnahmen:

- Zugabe eines Sauerstoffdonators
- Ausreichende Abwasserfrischhaltung über ausreichende Länge

Vorteile	Nachteile
Gute Wirkung gegen Geruch & Korrosion bei ausreichender, zielgerichteter Sauerstoffzugabe	Hohe Laufende Kosten (24 h/d Kompressor bzw. Chemikaliendosierung)
Neben H ₂ S andere Geruchsstoffe auch beherrschbar	Zugabe "auf Strecke" erforderlich
Nachfolgende Bauwerke werden geschont	Geringe Erfahrungen

Chlordioxiddosierung

- ► Wirkprinzip Chlordioxiddosierung: ClO₂ reagiert unmittelbar und sehr schnell. Deutliche Reduzierung des Biofilms und damit Reduktion der Sulfidbildung. Wirkung auch bei seitlichen Einleitungen
- ► ClO₂ besitzt eine desinfizierende Wirkung und dient gleichzeitig als Sauerstoffdonator und vermindert somit anaerobe Zonen
- ➤ Die Dosierung erfolgt idealtypisch am Pumpwerk vor Druckrohrleitungen

Vorteile	Nachteile
Gute Wirkung gegen Korrosion	Geringe Praxiserfahrung
Leicht steuerbar und gut dosierbar	Einfahrphase von bis zu 2 Monaten
Mietung einer Komplettanlage und des Betriebs	Wassergefährdungsklasse 2, Anlage nach Biozidverordnung (Verantwortung liegt beim Betreiber)
	Abhängigkeit von einem Lieferanten

Druckluftspülung

Wirkprinzip Druckluftspülung:

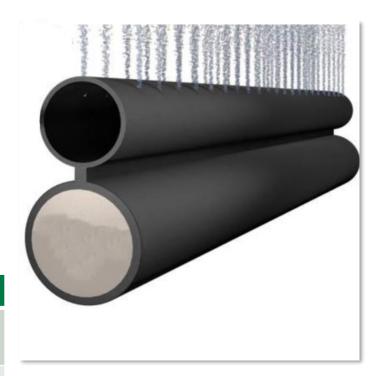
Durch freiblasen mittels Druckluft soll vermieden werden, dass die Aufenthaltszeiten in der Druckleitung zu groß werden, gleichzeitig löst sich zusätzlich Sauerstoff im Abwasser

► Nötige Maßnahmen:

- Einrichtung einer Nachspülzeit
- Durchführung der Druckluftspülung nach jedem Pumpvorgang

Vorteile	Nachteile
Gute Wirkung gegen Geruch & Korrosion	Hohe Laufende Kosten (Druckluft)
	Relativ wartungsaufwendig
	Komplexe Systeme mit diversen Einleitungen schwierig – mehrfach Freispülungen mit komplexer Steuerung!
	Wirkung nicht garantiert

Linienbelüftung


► Wirkprinzip Linienbelüftung:

Durch eine über die gesamte Druckleitungsstrecke eingerichtete Belüftung erfolgt eine Frischhaltung des Abwassers (Deckung des Sauerstoffbedarfs).

► Nötige Maßnahmen

- Einziehen eines perforierten Belüftungsschlauches
- Kompressor zur Luftversorgung

Vorteile	Nachteile
Gute Wirkung gegen Geruch & Korrosion bei ausreichender Belüftung	Laufende Kosten (24 h/d Kompressor)
Neben H ₂ S andere Geruchsstoffe auch beherrschbar	Kein Einbau in Gefällestrecken Druckleitung möglich
Nachfolgende Bauwerke werden geschont	Eignung nur für steigende Druckleitungen
	In der DRL eingezogene Zweitleitung

Druckrohrleitung verlängern

► Wirkprinzip Druckleitungsverlängerung:

Durch die Verlängerung einer Druckrohrleitung soll vermieden werden, dass das H₂S im nach-folgenden Kanal Geruchsbelästigungen verursacht

- ► Nötige Maßnahmen:
- Verlegung der Druckrohrleitung
- Keine Abwassereinleitung ins Kanalnetz
- Umfahrung des Kanalnetzes

Vorteile	Nachteile
Gute Wirkung gegen Geruch & Korrosion	Hohe Investitionskosten
Funktioniert zuverlässig	Nachfolgendes PW und Freispiegelkanäle werden stärker belastet
Geringe laufende Kosten	
Geringer Wartungsaufwand	

Aktive Abluftbehandlung

▶ Wirkprinzip aktive Abluftbehandlung:

Durch eine Abluftbehandlung soll das H₂S gezielt an einem Standort behandelt werden, um für eine umliegende Geruchsvermeidung zu sorgen.

► Nötige Maßnahmen:

- Bau Abluftanlage
- gezielte Abführung des Gases

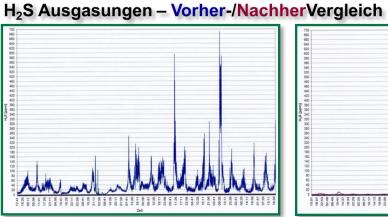
Vorteile	Nachteile
Gute Wirkung gegen Geruch & Korrosion	Laufende Kosten
Neben H ₂ S andere Geruchsstoffe auch beherrschbar	Bauliche Anlage, je nach erforderlicher Ausbaugröße teilweise hohe Investitionskosten
Nachfolgende Bauwerke werden geschont	

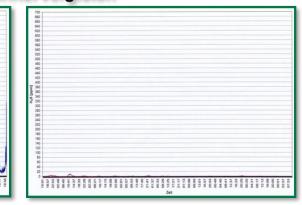
Passive Abluftbehandlung

► Wirkprinzip aktive Abluftbehandlung:

Durch eine Abluftbehandlung soll das H₂S gezielt an einem Standort verdünnt werden, um für eine umliegende Geruchsvermeidung zu sorgen.

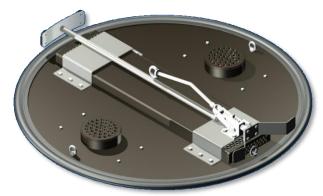
- ► Nötige Maßnahmen:
 - Bau Abluftkamin
 - Überprüfung Wirksamkeit

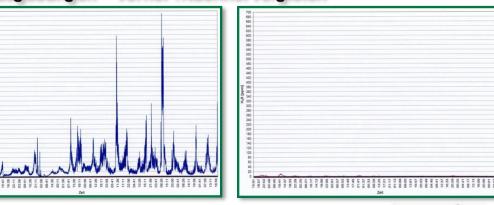

Vorteile	Nachteile
Gute Wirkung gegen geringe Geruchs- und Korrosionsbeschwerden	Wind erforderlich
Relativ geringe Investitionskosten	Nur bei geringen Belastungen beherrschbar
Relativ geringe Betriebskosten	



Geruchsdämpfungs-System

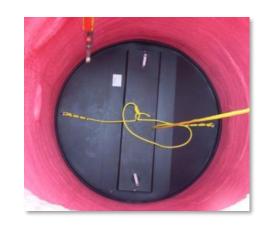
► Einsatz z.B. bei korrosionsgeschützten Schächten


Vorteile	Nachteile
Extrem sicher gegen Geruchsemissionen	Eventuell Verstärkung der Korrosionsproblematik
Kaum Betriebskosten	Regelmäßige Funktionsinspektion notwendig
Schnell umsetzbar	
wirkt gegen eine Vielzahl von Geruchsstoffen	


Geruchsdämpfungs-System

► Einbau über Rohrscheitel

Vorteile	Nachteile
Extrem sicher gegen Geruchsemissionen	Eventuell Verstärkung der Korrosionsproblematik unterhalb des Systems
Kaum Betriebskosten	Regelmäßige Funktionsinspektion notwendig
Schnell umsetzbar	
Einsparung bei Schachtsanierung	


Korrosionssichere Bauweise

- ► Ausstattung von Kanälen und Schächten mit korrosionsbeständigem Material
 - Hierfür sollte zuvor eine detaillierte Zustandsbewertung durchgeführt werden
- ► Mögliche Maßnahmen

- Sanierung, Auskleidung oder Aufbringung mittels Spritzverfahren

Vorteile	Nachteile
langandauernde Wirkung	Keine Auswirkung auf Geruch
keine Betriebskosten	Hohe Investitionskosten
	Aufwendige Baumaßnahmen

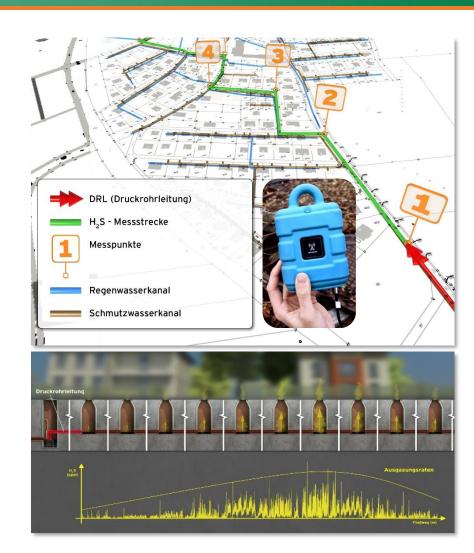
Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS
- 5. Beispielprojekt

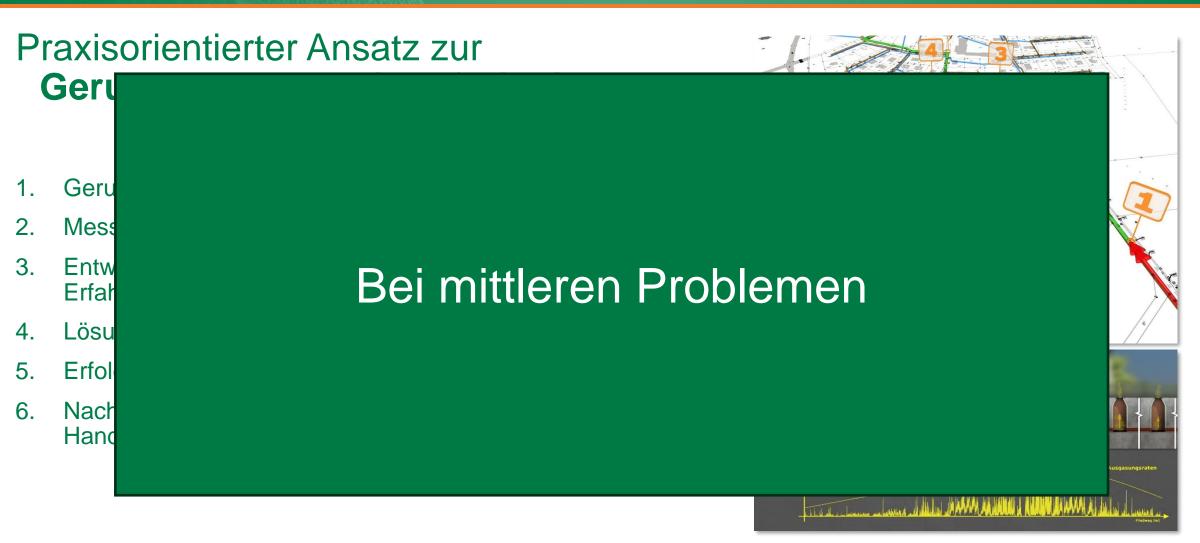
Pragmatischer Ansatz zur **Geruchsfreiheit**

- 1. Geruchsbeschwerde → Bürger beruhigen
- 2. Betriebspersonal führt eine Inspektion der örtlichen Gegebenheiten durch
- 3. Einsatz der schon bereits praktizierten Lösung im Verbandsgebiet (Test 1)
- 4. Weitere Geruchsbeschwerden → ja
- 5. Test mit Lösungsvariante 2
- 6. Weitere Geruchsbeschwerden → nein

Mit unseren Testmobilen können viele verschiedene Technologien vor Ort mit einander verglichen werden.



Pragmatischer Ansatz zur Geru Geru Einsa Verb Weit Bei geringen Problemen Test Weit Mit unser verschie mit einan


Praxisorientierter Ansatz zur Geruchs- & Korrosionsfreiheit

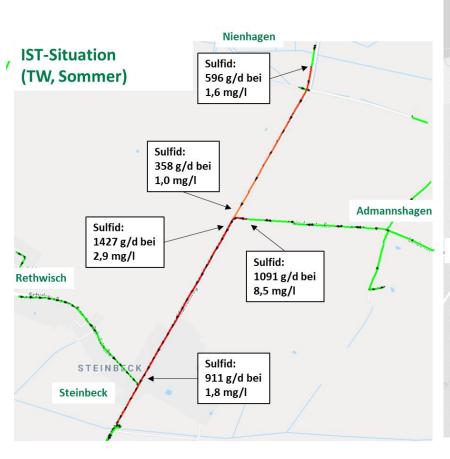
- 1. Geruchsbeschwerde → Bürger beruhigen
- 2. Messungen im betroffenen Kanalabschnitt
- Entwicklung von Lösungsansätzen anhand Erfahrungen und Messungen
- 4. Lösung dimensionieren und bauen
- 5. Erfolgsmessungen
- Nach negativen Erfolgsmessungen erneuter Handlungsbedarf

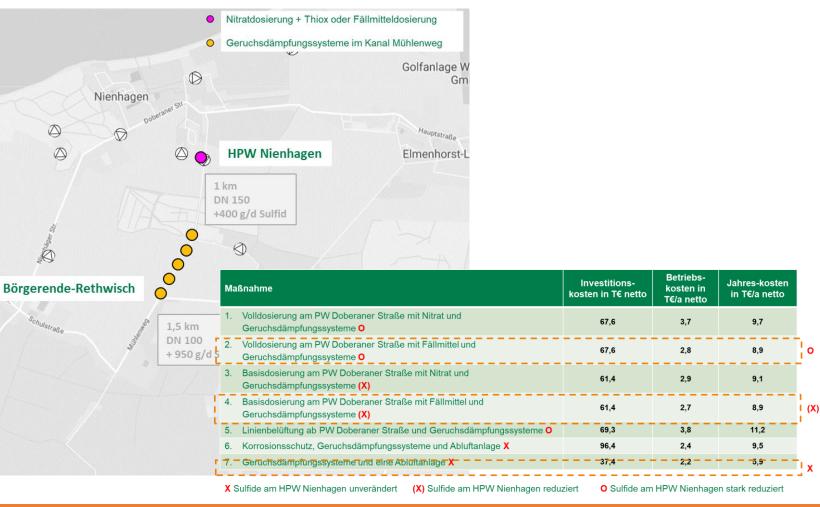
Uni

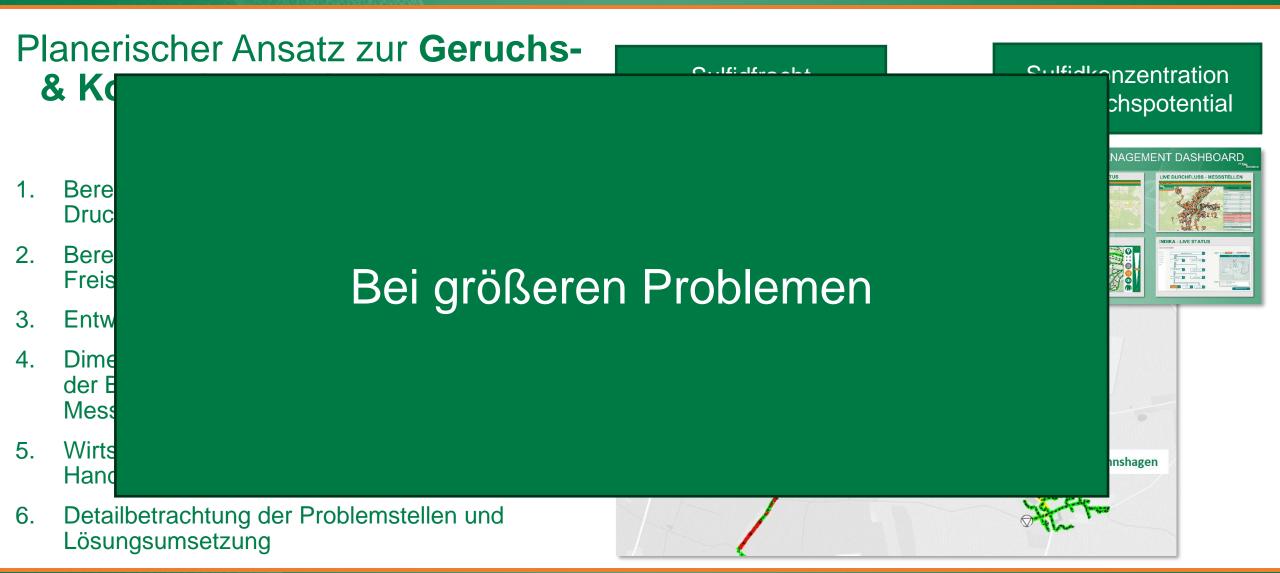
Planerischer Ansatz zur **Geruchs**- **& Korrosionsfreiheit**

- 1. Berechnung der Sulfidbildung innerhalb der Druckrohrleitungen über verschiedene Szenarien
- 2. Berechnung der Sulfidemission innerhalb des Freispiegelkanals über verschiedene Szenarien
- 3. Entwicklung von erprobten Lösungskonzepten
- 4. Dimensionierung der Lösungen auf Grundlage der Berechnungsergebnisse, vorhandener Messungen und der Erfahrung des Auftraggebers
- 5. Wirtschaftlichkeitsberechnung und Handlungsempfehlung
- Detailbetrachtung der Problemstellen und Lösungsumsetzung

Sulfidfracht


→ Korrosionspotential


Sulfidkonzentration
→ Geruchspotential

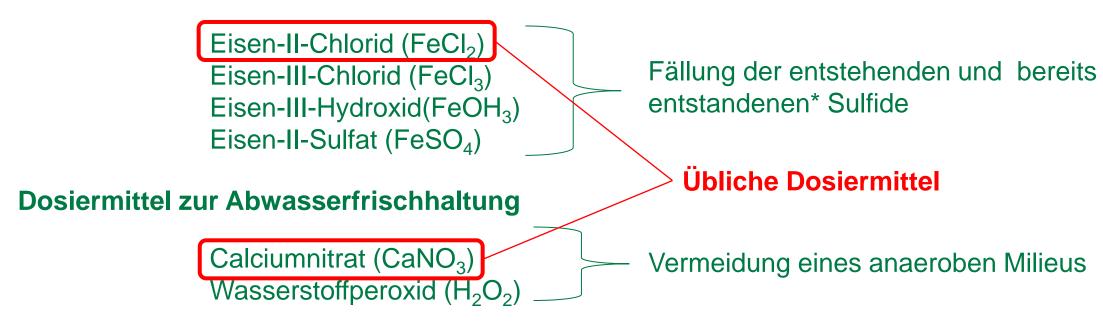

Planerischer Ansatz zur Geruchs-

& Korrosionsfreiheit

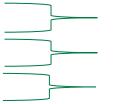
Agenda

- 1. Vorstellung UNITECHNICS
- 2. Grundlagen zu Geruch und Korrosion
- 3. Lösungen Geruch und Korrosion
- 4. Mögliche Herangehensweisen
 - 1. Testversuche
 - 2. Messungen
 - 3. Geruchs- und Korrosionsvermeidungsgutachten mit SULFIDUS

5. Beispielprojekt


Exkurs: Was bewirkt eine Dosierung?

Vermeidung der Sulfidbildung oder Reduzierung der H₂S-Ausgasung


Wirkungsweise ist abhängig vom Dosiermittel

Eisenfällmittel

Weitere Dosiermittel

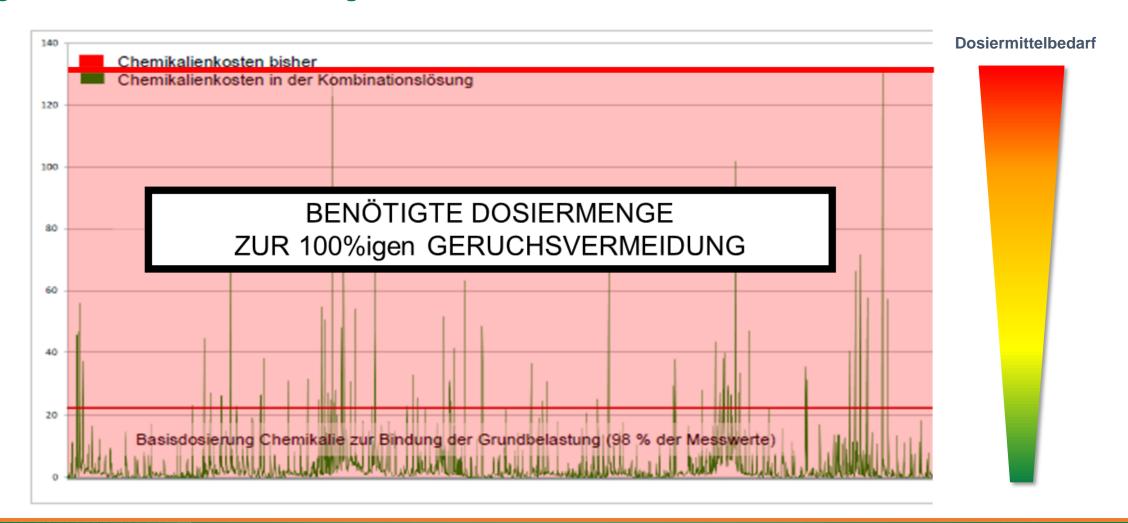
Chlordioxid (CIO₂) Eisen-Nitrat-Mix Natriumhydroxid (NaOH)

Desinfektion, Reduzierung der Sielhaut Mischeffekt aus Fällung und Abwasserfrischhaltung Vermeidung von Ausgasungen durch pH-Anhebung

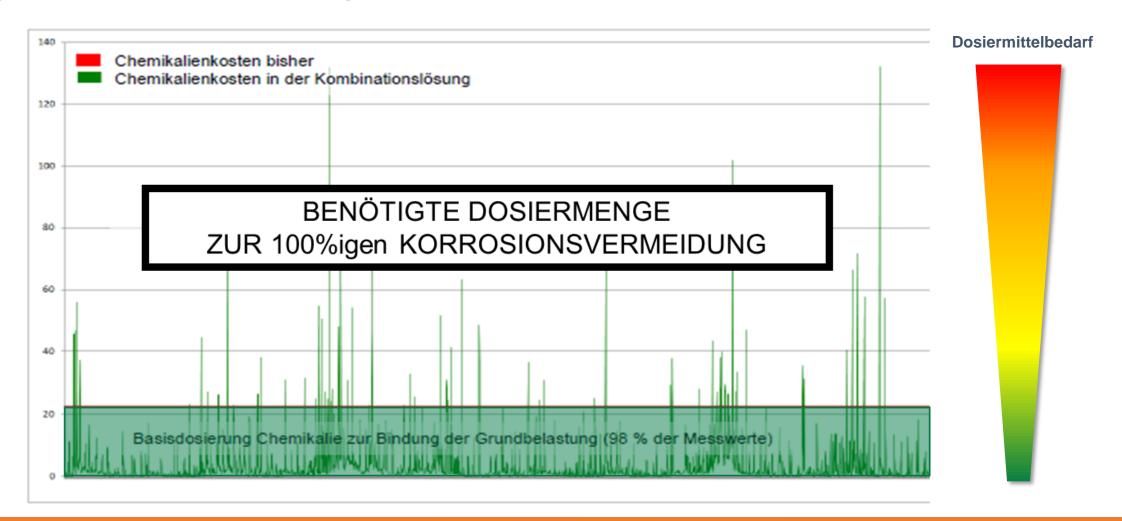
Welches Dosiermittel benötige ich und wieviel?

pragmatischer vs. planerischer Ansatz

Welche Wirkung soll erzielt werden?


Geruchsvermeidung vs. Korrosionsvermeidung

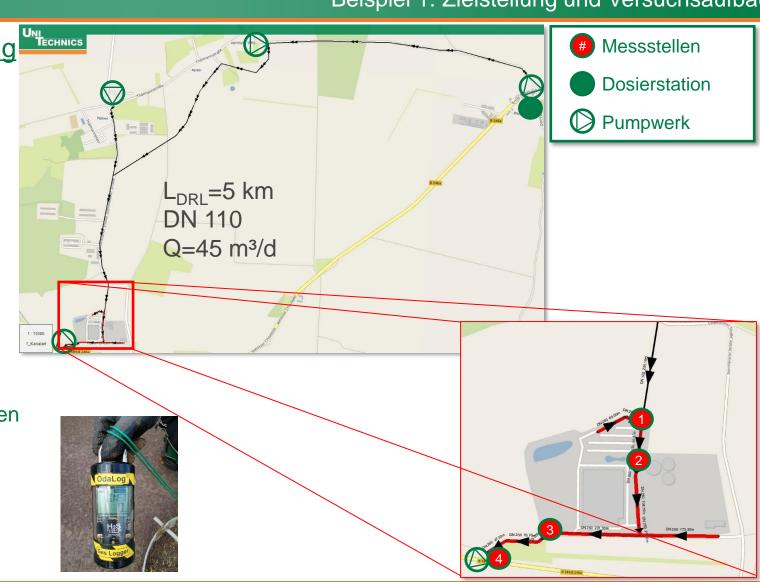
Dosiermengen


Vergleich Voll- und Basisdosierung

Vergleich Voll- und Basisdosierung

Beispielprojekt:

Dosierungen mit unterschiedlichen Dosiermitteln


Beispiel 1: Zielstellung und Versuchsaufbau

<u>Zielstellung – kostengünstigste Dosierung</u>

- → Priorität 1: Bauwerksschutz
- → Priorität 2: Arbeitsschutz
- → Priorität 3: Geruchsfreiheit

Versuchsaufbau

- → Installation einer mobilen Dosierstation
- \rightarrow 4 H₂S-Messstellen:
 - 1. Druckübergabeschacht
 - 2. 2. Schacht nach DUS
 - 3. 4. Schacht nach DUS
 - 4. Pumpwerk ca. 400 m nach DUS
- → Test von 3 Dosiermitteln Wirkungsgrad / Kosten
 - 1. Calciumnitrat (45 %)
 - 2. Eisen-II-Chlorid (30%, WS 138 g/l)
 - 3. Eisen-III-Hydroxid (WS 150 g/l)

UNI

TECHNICS

Beispiel 1: Zielstellung und Versuchsaufbau

Installation der Dosieranlagen

Beispiel 1: M1 - Druckübergabeschacht

Keine Dosierung

Szenario 1

Ø 23,6 ppm Max: 513 ppm

Nitratdosierung

Szenario 2

Ø 19,2 ppm Max: 241,0 ppm

Szenario 3

Ø 11,1 ppm Max: 131,0 ppm

Szenario 4

Ø 4,2 ppm Max: 98,0 ppm

Eisen-II-Chlorid-Dosierung

Szenario 5

Ø 0,8 ppm Max: 71,0 ppm

Szenario 6

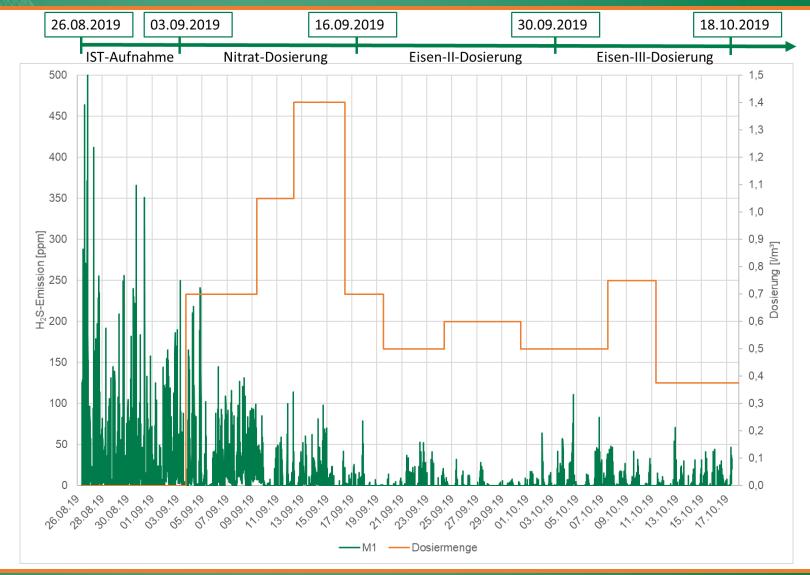
Ø 1,3 ppm Max: 53,0 ppm

Szenario 7

Ø 0,5 ppm Max: 32,0 ppm

Eisen-III-Hydroxid-Dosierung

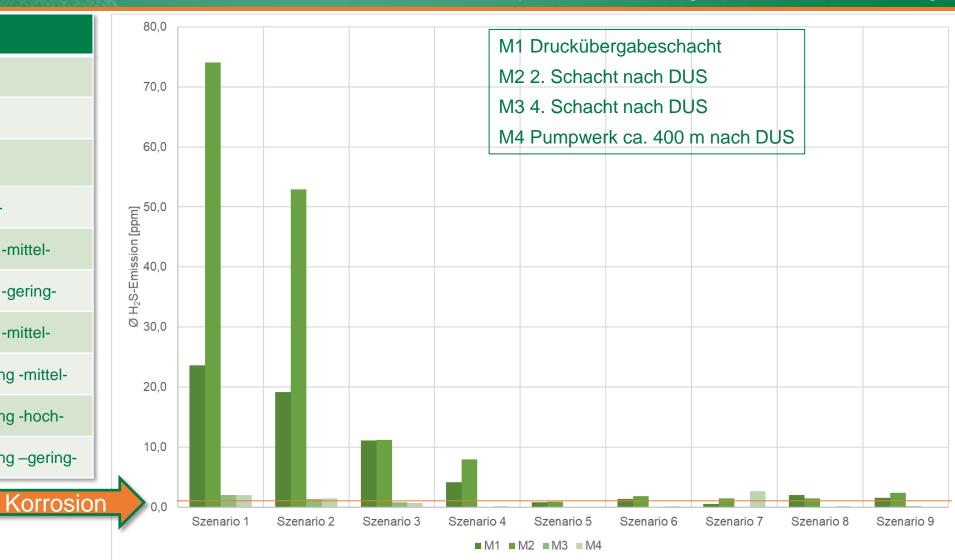
Szenario 8


Ø 2,0 ppm Max: 111,0 ppm

Szenario 9

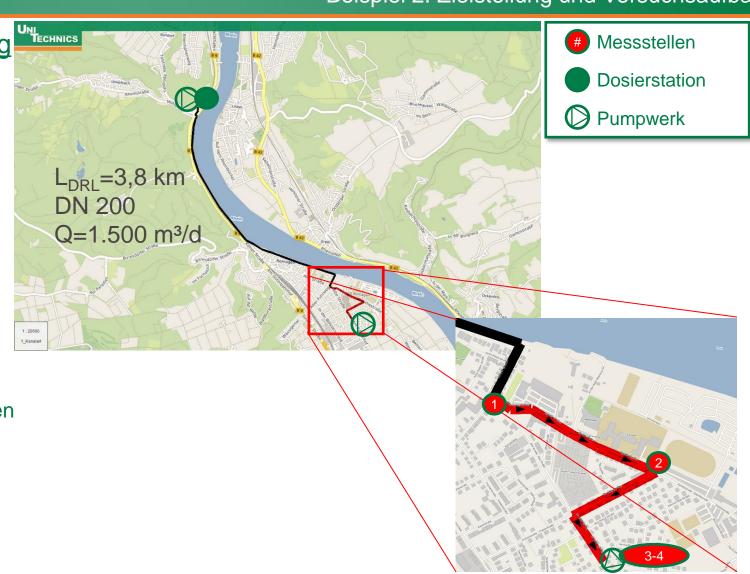
Ø 1,7 ppm Max: 48,0 ppm

Szenario 10


Ø 1,4 ppm Max: 71,0 ppm

Beispiel 1: Darstellung der mittleren Belastungen

Szenario	Bezeichnung	
1	Keine Dosierung	
2	Nitratdosierung -mittel-	
3	Nitratdosierung -hoch-	
4	Nitratdosierung -sehr hoch-	
5	Eisen-II-Chlorid-Dosierung -mittel-	
6	Eisen-II-Chlorid-Dosierung -gering-	
7	Eisen-II-Chlorid-Dosierung -mittel-	
8	Eisen-III-Hydroxid-Dosierung -mittel-	
9	Eisen-III-Hydroxid-Dosierung -hoch-	
10	Eisen-III-Hydroxid-Dosierung –gering-	


Beispiel 2: Zielstellung und Versuchsaufbau

<u>Zielstellung – kostengünstigste Dosierung</u>

- → Priorität 1: Bauwerksschutz
- → Priorität 2: Arbeitsschutz
- → Priorität 3: Geruchsfreiheit

Versuchsaufbau

- → Installation einer mobilen Dosierstation
- → 4 H₂S-Messstellen:
 - 1. Druckübergabeschacht
 - 2. 6. Schacht nach DUS
 - 3. Pumpwerk ca. 1 km nach DUS
 - 4. Ablauf Pumpwerk
- → Test von 2 Dosiermitteln Wirkungsgrad / Kosten
 - 1. Eisen-II-Chlorid (20%, WS 86 g/l)
 - 2. Calciumnitrat (45 %)

Beispiel 2: Ergebnisse - Übergabeschacht

<u>Fällmitteldosierung</u>

Szenario 1: Niedrig Ø 2,4 ppm Max: 61,0 ppm

Szenario 2: Hoch Ø 0,1 ppm Max: 5,0 ppm

Szenario 3: Mittel Ø 0,2 ppm Max: 15,0 ppm

Keine Dosierung

Szenario 4: Keine Ø 11,2 ppm Max: 116,0 ppm

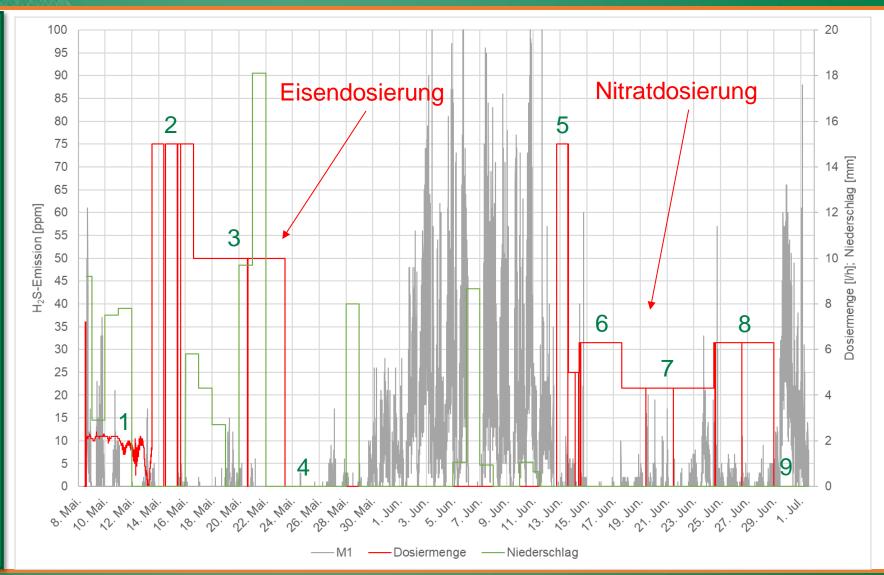
Nitratdosierung

Szenario 5: Hoch Ø 0,5 ppm Max: 11,0 ppm

Szenario 6: Mittel

Ø 0,6 ppm Max: 60,0 ppm

Szenario 7: Niedrig

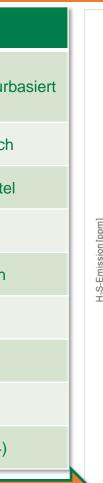

Ø 1,0 ppm Max: 33,0 ppm

Szenario 8: Mittel

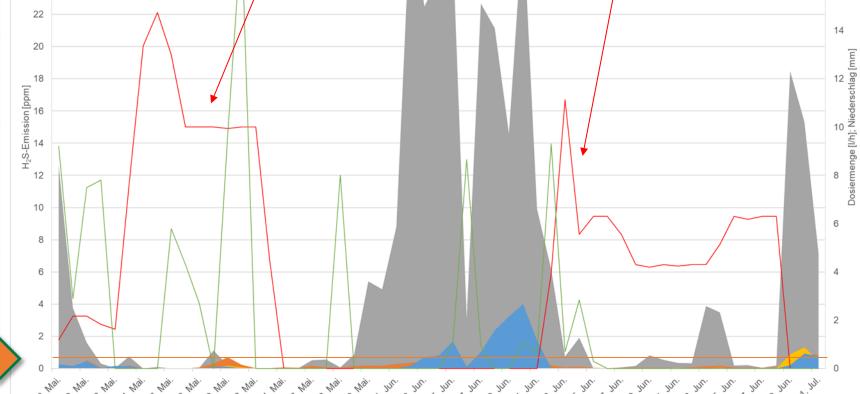
Ø 0,7 ppm Max: 57,0 ppm

Keine Dosierung

Szenario 9: Keine Ø 14,7 ppm Max: 88,0 ppm



Beispiel 2: Darstellung der Tagesmittelwerte


Nitratdosierung

Nr.	Szenario	
1	FeCl ₂ Mengen- und temperaturbasiert	
2	FeCl ₂ Kontinuierlich hoch	
3	FeCl ₂ Kontinuierlich mittel	
4	Keine Dosierung	
5	NO ₃ Kontinuierlich hoch	
6	NO ₃ Mittel	
7	NO ₃ Niedrig	
8	NO ₃ Mittel	
9	Keine Dosierung (wie 4)	

26

24

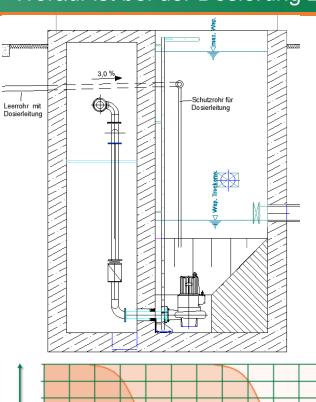
Eisendosierung

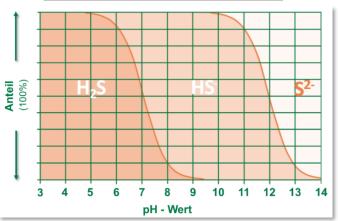
Worauf ist bei der Dosierung zu achten?

- Dosierstelle

- → Möglichst nah an der Abwasserpumpe für optimale Durchmischung
- → Dosierleitung getaucht um Oxidation von Eisen-II zu Eisen-III möglichst vermeiden, Säurekorrosion

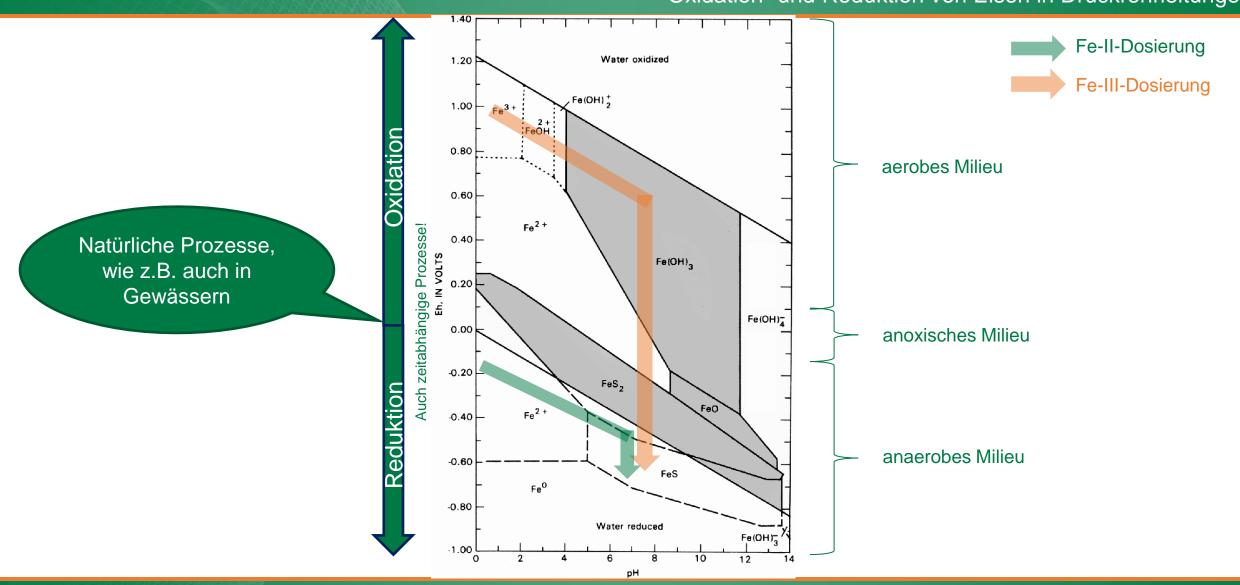
- Dosiermengen


- → Es gibt immer Nebenreaktionen (z.B. Phosphatbindung bei Eisendosierung)
- → Überdosierung von Eisen bei höheren Abwassermengen
- → Überdosierung von Nitrat bei langen Aufenthaltszeiten


- Wirkungsgrenzen der Dosiermittel

- → Bereits bestehendes H₂S kann nicht durch Eisen gefällt werden
- → Eisen-III ist eher bei langen Aufenthaltszeiten in der DRL wirksam (Nebenreaktionen Wirkung primär abhängig vom **Redoxpotential**!)
- → System muss sich bei der Nitratdosierung adaptieren gute Wirkung z.T. erst nach einigen Tagen bis wenigen Wochen sichtbar
- → Auch beim Nitrat ist eine Abhängigkeit des **Redoxpotentials** gegeben!

- Dosiersteuerung


→ Zu welchem Zeitpunkt muss welche Dosiermenge dosiert werden?

Oxidation- und Reduktion von Eisen in Druckrohrleitungen

Uni

Welche Aufenthaltszeiten sind für eine gute Wirkung des Dosiermittels erforderlich?

Aufenthaltszeiten in der Druckrohrleitung	Nitrat	Eisen-II	Eisen-III
Frisches Abwasser an der Dosierstelle	< 6h	> 6 h	> 12 h
Angefaultes Abwasser an der Dosierstelle	> 6 h	sofort	Nach kurzer Zeit (?)

Kosten?

Steuerung in Abhängigkeit der Pumpenzyklen/ **Durchflussmenge**

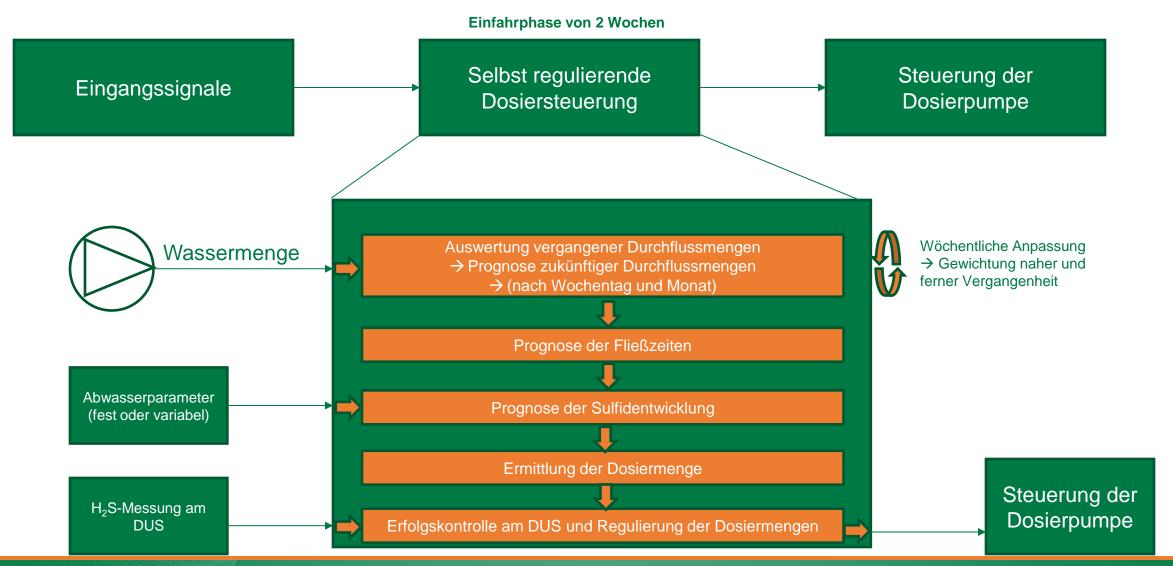
/Abwassermengen

Bei eher hohen Dosier-/Abwassermengen

Steuerung in **Abhängigkeit** der H₂S-

Ausgasung

H₂S



Nutzen?

Aufwand / Kosten

Entwicklung einer UNITECHNICS-Dosiersteuerung

- Abbildung "aller" möglichen Gegebenheiten komplex
 - → z.B. bestehen individuelle Gegebenheiten bei der Pumpenschaltung, Regensteuerung, usw.
- Standortbedingungen sind weiterhin nicht zu vernachlässigen
 - → Sulfid liegt bereits vor, Zwischenpumpwerke, seitliche Einleitungen in die DRL etc.
- Ist die Entwicklung so einer Steuerung in Projekten möglich?
 - → wie z.B. Haltern am See
- Ist das Interesse an dieser Steuerung vorhanden / lässt sie sich verkaufen?
 - → Bleiben die Kosten im Rahmen?
- Steuerung nur im Zusammenhang mit unseren Anlagen?
- Steuerung als Betriebsgeheimnis? (Sulfidberechnung hinterlegt)
- Wann ist der Einsatz sinnvoll / wann nicht?
- Kann die Steuerung die Erwartungshaltung des Kunden erfüllen?

Was ist bei der Planung einer stationären Dosieranlage zu beachten?

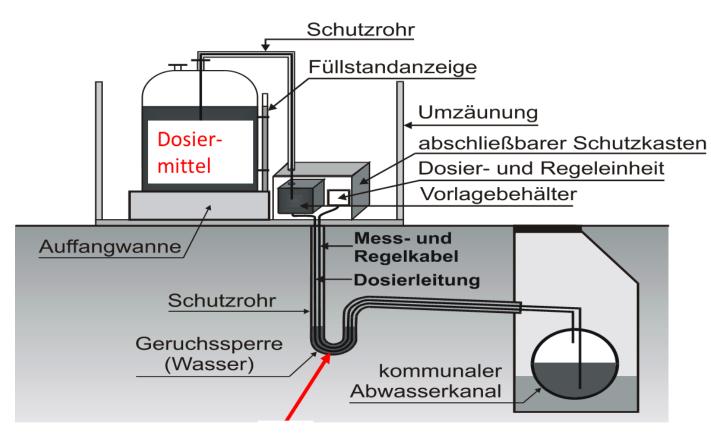
Anforderungen an Dosieranlagen

Wassergefährdungsklassen der Dosiermittel

Dosiermittel	WGK	L
Eisen-II-Chlorid	1	
Eisen-II-Sulfat	1	
Eisen-III-Chlorid	1	
Eisen-III-Hydroxid / WW-Schlamm	Keine	
Calciumnitrat	1	
Wasserstoffperoxid	1	
Chlordioxid	2	L

WGK <u>muss</u> im Sicherheitsdatenblatt der Chemikalie aufgeführt werden!

Für die Einstufung werden u.a. geprüft: Toxizität, Bioakkumulationspotential, Abbaubarkeit, Mobilität, schädliche Auswirkungen auf die Umwelt...


Detailliste siehe AwSV Anhang 1

"Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen"

Die meisten Dosiermittel weisen eine WGK auf, und unterliegen somit den Anforderungen der **AwSV**!

Aufbau einer Dosieranlage

Schutzrohr für Dosierleitung mit Gefälle in eine detinierte Richtung – der Siphon ist ungeeignet bezüglich Leckageerkennung ; als Geruchsverschluss gibt es Ringraumdichtungen (von z.B. Doyma, Hauff u.a.)

Anforderungen

- Anforderungen hinsichtlich wassergefährdende Stoffe (AwSV / DWA-A 779)
- Anforderungen hinsichtlich Rückhaltevolumen, Dichtigkeit, Aufstell- & Abfüllfläche (DWA-A 779 785 & 786)
- Anzeigeplicht bei der Unteren Wasserbehörde
- Wiederholende Prüffristen bei unterirdischen Anlagen
- Ggfs. Baugenehmigungen bei großen Dosieranlagen (je nach Landesbaurecht)
- Sonderauflagen bei Trinkwassersch

UNI **IECHNICS**

Dosieranlagen mit geringen Dosiermittelverbrauch

Mit Umhausung

ohne Umhausung

Uni TECHNICS

Dosieranlagen mit hohen Dosiermittelverbrauch

oberirdisch

unterirdisch

UNITECHNICS Dosierprojekte

Planung

Bau / Optimierung

Dosiertests

> 60 Projekte in Deutschland

Ort	Jahr 🚚	Projekt	▼ Ausführung
Bad Salzungen	2019- 2020	Begleitung der Planung und Inbetriebnahme	Beratuung des Planungsbüros und Erstellung eines Pflichtenheftes sowie messrtechnische Begleitung der Inbetriebnahme und Einfahrphase einer stationären Dosieranlage
Bräunlingen	2017 2019	Geruchs- und Korrosionsvermeidung infolge einer Abwasserdruckleitung	Aufbau einer stationären Dosierstation, Nachträgliche Erweiterung mit Online- Technologie
Eggenstein- Leopoldshafen	2017 - 2019	Geruchs- und Korrosionsvermeidung infolge einer Abwasserdruckleitung	Aufbau einer mobilen Dosieranlage, Betrieb über einige Monate
Eisleben	2020	Geruchs- und Korrosionsvermeidung infolge einer Abwasserdruckleitung	Aufbau einer mobilen Dosieranlage an 2 Pumpwerksstandorten, Dosierung von Calciumnitrat und Eisen-II-Chlorid
Elsterwerda	2020	Geruchs- und Korrosionsvermeidung infolge einer Abwasserdruckleitung	Durchführung eines Dosiertests mit Eisen-II-Chlorid und Interimsbetrieb über mehrere Monate
Haltern am See	2020	Geruchs- und Korrosionsvermeidung auf der Kläranlage	Test einer Dosiersteuerung auf Basis einer H2S-Messung
Jena	2020	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Bau einer stationären Dosieranlage an einem Pumpwerk, Anlage mit 4 IBC
Konradsreuth	2020	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Bau einer stationären Dosieranlage an einem Pumpwerk, Anlage mit 2 IBC
Lampertheim	2020	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Testdosierung an einem Pumpwerk, Metkauf der Testanlage
Ochsenfurt	2020	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Planung einer stationären Dosieranlage an einem Pumpwerk mit einem 20 m ³ - Behälter (Betrachtung oberirdischer und unterirdischer Dosiertank)
Remagen	2020	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Planung einer Dosieranlage für Calciumnitrat an einem PW, Dosierbehälter mit 20 m³ Volumen
Voerde	2020	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	einmonatige Probedosierung mit begleitender H2S- Messung infolge der Druckrohrleitung
Allgäuer Tor	2019	Geruchs- und Korrosionsvermeidung	Aufbau einer mobilen Dosieranlage infolge eines Fettabscheiders
Bad Salzungen	2019	Geruchs- und Korrosionsvermeidung durch 2 DRL	Aufbau von 2 mobilen Dosieranlagen an 2 Pumpwerken
Eggenstein- Leopoldshafen	2019	Geruchs- und Korrosionsvermeidung infolge einer Abwasserdruckleitung	Aufbau einer stationären Dosierstation in einem Fertigcontainer
Heilbronn	2019	Geruchsvermeidung für BUGA	Aufbau einer mobilen Dosieranlage, Steuerung auf Basis mehrerer Abwasserparameter
Jena	2019	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Aufbau einer mobilen Dosieranlage, Betrieb über einige Monate
Remagen	2019	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Dosiertest mit Eisen-Chlorid und Calciumnitrat über 8 Wochen
Werdohl	2019	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Aufbau von 2 mobilen Dosieranlagen und Metkauf
Hompesch & Pattern	2018	Geruchs- und Korrosionsvermeidung infolge von 2 Druckrohrleitungen	Aufbau von 2 mobilen Dosieranlagen an 2 Pumpwerken die zu einer Druckrohrleitung zusammengeführt werden
Neuss	2018	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Planung einer stationären Dosieranlage an einem Pumpwerk mit einem 30 m³- Behälter
Paderborn	2018	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	3 Monate Interimsdosierung, Zugabe des Dosiermittels an einem Pumpwerk mit begleitender H2S- Messung infolge der Druckrohrleitung
Haltern am See	2017	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Planung und Bau einer Chemikaliendosierstation und- Inbetriebnahme mit begleitender H2S- Messung sowie Einrichtung einer tages- und messwertabhängigen Dosiermengensteuerung
Rottweil	2017	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Planung und Bau einer Chemikaliendesierstation mit unterirdischem Vorlagebehälter
Valencia	2017	Geruchs- und Korrosionsvermeidung	Aufbau von 2 mobilen Dosieranlagen, Stromversorgung einer Dosieranlage mittels Solarpanel, Dosierung jeweils in Freigefällekanalisation über 2 Wochen
Lippstadt	2016	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung und eines Dükers	Testdosierung über 4 Wochen mit Wasserwerkssschlamm und begleitender H2S Messung
Paderborn	2016	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Planung einer stationären Dosieranlage an einem Pumpwerk
Ruhrgebiet	2016	Studie zur Sulfidbildung im Abwasserkanal Emscher	Empfehlung zum Betrieb mehrerer Dosierstation mit Berechnung der zu erwartenden Dosiermengen (unterschiedlicher Chemikallen) und Vorschläge für Standorte der Dosierstationen entlang des Emscherkanals -> Umsetzung erfolgte seitens der Emschergenossenschaft
Bernau	2015	Geruchs- und Korrosionsvermeidung infolge einer Pumpwerkskette	Planung einer Chemikaliendosiersdtation bei überdurchnittlich hohen Standzeiten des Abwassers im Kanalnetz (ca. 24 h)
Bernau	2015	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	6 Monate Interimsdosierung, Zugabe des Dosiermittels an einem Pumpwerk mit begleitender H2S- Messung infolge der Druckrohrleitung
Grabenstetten	2015	Geruchs- und Korrosionsvermeidung infolge einer Abwasserdruckleitung	Bau einer stationären Dosieranlage an einem Pumpwerk, Steuerrung in Abhängigkeit des Abwasserzuflusses und em Füllstand des Pumpwerks
Haltern am See	2015	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	Berechnung der Sulfidbelastung in dem Betrachtungsgebiet mit anschließender simultaner Probedosierung über 4 Wochen an 2 Standorten, Zugabe des Dosiermittels an jeweils einem Pumpwerk mit begleitender H2S- Messung infolge der Druckrohrleitungen
Paderborn	2015	Geruchs- und Korrosionsvermeidung infolge einer Druckrohrleitung	einmonatige Probedosierung mit begleitender H2S- Messung infolge der Druckrohrleitung

Wir wünschen Ihnen eine schöne Adventszeit

Wie geht es jetzt weiter?

Wir sprechen über Ihre Herausforderung.

Sie holen sich gleich bei mir Ihre Testversion SULFIDUS ab.

Sie melden sich zu einer unserer Geruchsmanagerschulungen an:

Übersicht aller UNITECHNICS Veranstaltungen: www.unitechnics.de/veranstaltungen